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The problem of obtaining asymptotic expressions describing the shape of small 
sessile and pendant drops is revisited. Both cases display boundary-layer behaviour 
and the method of matched asymptotic expansions is used to obtain solutions. These 
give good agreement when compared with numerical results. The sessile solutions are 
relatively straightforward, while the pendant drop displays a behaviour which is 
both rich and interesting. 

1. Introduction 
The shape of liquid drops has long been a source of fascination to engineers, 

physicists and mathematicians. The physics of curved fluid-liquid interfaces has long 
been understood, the fundamental equation (equation ( l ) ) ,  which postulates a jump 
in the pressure across any curved interface, having originally been derived by 
Laplace. Mathematically the equation has remained of interest owing to its 
nonlinearity: even in the axisymmetric case, when (1) reduces to an ordinary 
differential equation, no general solution is possible. It has thus proved necessary to 
resort to numerical solutions, the first of these being the hand-calculated tables of 
Bashforth & Adams (1883) who computed the shape of liquid drops as a function of 
surface tension and drop size. These results have been significantly improved upon 
in recent times with the advent of digital computers. Of considerable interest is the 
work of Padday (1971) who combines numerical solutions with a qualitative and 
quantitative account of the different axisymmetric profiles which can arise. The most 
comprehensive computations performed to date have been those of Hartland & 
Hartley (1976) who used a fourth-order Rung-Kutta method claiming accuracy to 
within one part in a million. Furthermore they did not restrict their calculations to 
drop shapes : also included were external menisci shapes as for example occur when 
an axisymmetric object is placed in an infinite sea of liquid. Their work includes 
extensive tables of numerical results. At this stage one might wonder what the 
particular fascination is for these solutions. From an aesthetic point of view i t  is a 
challenge to be able to describe the shape of a liquid drop as a function of the relevant 
physical parameters: all the more as these solutions can be readily compared with 
experimental values and the soundness of the physical theory checked. Conversely it 
is also possible to use a knowledge of drop shape to indirectly measure surface tension 
or contact angle as illustrated by Padday & Pitt (1972), Shanahan (1982) and 
O’Brien t van den Brule (1991). So a knowledge of drop shape is also of practical use. 
The aim of the present paper is to reconsider the problem of deriving an analytic 
solution for the shape of small sessile and pendant drops. A sessile drop may be 
defined as one in equilibrium resting on a flat horizontal surface (figure 1) while a 

t Current address: Mathematical Institute, 24-29 St Giles’, Oxford OX1 3LB, UK. 
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i 
FIGURE 1. Physical and dimensionless coordinate system for a sessile drop. 

FIGURE 2. Schematic drawing of pendant drop showing outer, neck regions (not to scale). 

pendant drop is one which hangs from a horizontal ceiling (figure 2). Though the 
equations describing the shape of both drops are similar, the body forces have 
opposing effects tending in the former case to flatten the drop and in the latter to 
draw out or elongate the shape. Note in particular the neck region in the pendant 
drop which is mathematically extremely interesting as we shall see. 

These problems have already been considered by Chesters (1977) but in a less than 
rigorous fashion, a number of ad ?wc assumptions being made in order to simplify the 
equations. In contrast, we shall show, by means of an alternative formulation of the 
problem, that both the sessile and pendant problems can be solved by a parameter 
perturbation, the small parameter being the dimensionless drop radius. One of the 
weaknesses of Chesters’ approach was that his perturbation quantity was a variable 
quantity, which left some doubt as to the accuracy of the solutions even though they 
compared favourably with numerical solutions. Furthermore, he obtained different 
solutions for different portions of the drop and matching of these component 
solutions had to be performed in an ad hoc fashion. Extension to higher-order 
solutions was thus not possible. As we shall see, his difficulties arise from his adoption 
of the traditional formulation of the problem in terms of the unknown radius of 
curvature at the apex of a drop. It is simpler to use the maximum radius of the drop 
as a lengthscale as suggested by Padday (1971) and used for example by Rienstra 
(1990) and Kuiken (1991) and the present paper investigates an alternative 
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formulation of the traditional second-order equation (2) as a pair of coupled first- 
order equations, using the inclination as a parameter. Our solutions will be shown to 
be an improvement on Chesters’ in all cases : some differences arise in the asymptotic 
expressions. Furthermore higher-order solutions in the sessile case can be obtained 
by standard techniques. Mathematically, the solutions are also of some interest. The 
sessile perturbation solutions have already been considered in O’Brien & van den 
Brule (1991) and are improved upon here where they will be shown to be regular 
everywhere except in a small boundary-layer region where the inclination approaches 
x rad. Singular perturbation techniques are necessary to describe the shape in this 
region. In  practice this boundary layer is only of importance in the case where the 
contact angle approaches x rad, which can occur, for example, in the case of water 
drops on a dirty surface. The pendant solutions are the real aim of this paper and are 
somewhat more complicated: a glance at figure 2 suggests that the solution in the 
neck region will be qualitatively somewhat different from that in the lower nearly 
spherical region. Singular perturbation techniques are again necessary and in fact it 
turns out that the upper region can be described in boundary-layer terms but 
another transition or interior boundary layer, analogous to the boundary layer of the 
sessile drop, occurs between the lower and neck regions and is necessary for the 
matching of these regions. Note also the occurrence of a point of inflexion: in the 
pendant case the boundary-layer behaviour is more fundamental since the inclination 
will always approach n rad as this point is approached. In  the course of our analysis 
we will be able to obtain an expression for the position at which inflexion occurs and 
indeed show that a sequence of such points can exist, each one corresponding to the 
beginning of a new drop joined to its adjacent neighbours by a thin neck region. 

The aim of the present paper is thus to reformulate the drop problem into a system 
which can be more readily solved by means of singular perturbation techniques. This 
method yields accurate results when compared to numerical solutions provided the 
drop is small enough in a sense to be discussed more fully in the course of the paper. 
The perturbation solutions have the added advantage of being asymptotically 
correct as they are derived in a rigorous manner using the method of matched 
asymptotic expansions. For purposes of clarity we consider the two types of drops 
separately using the same notation in each section rather than attaching suffixes to 
all variables. 

Part 1. Sessile drops 
2. Problem formulation 

We consider figure 1, depicting a sessile liquid drop in equilibrium in an infinite 
fluid medium. For completeness we give a short derivation of the capillary equation. 
Here, r and z represent the polar coordinates of the drop surface, z representing 
distance below the apex or highest point. The drop shape is assumed axisymmetric. 
The hydrostatic pressure in the drop is given by pgz+p*, where p is the density of 
the fluid and g the acceleration due to gravity. In this instance we have neglected the 
density of the surrounding fluid as for example would be reasonable in the case of a 
water drop in air. If the fluid density is not negligible the density p is taken to mean 
the liquid-fluid density differential. p* is the pressure jump across the interface a t  
z = 0 at  the apex. At this point we diverge somewhat from traditional formulations 
of the problem where this excess pressure is given in terms of the unknown radius of 
curvature at the apex, the point being that the two radii of curvature are equal at 
this point. This is unnecessary and it proves simpler to determine p* in the course of 
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the analysis. Along the interface the pressure is balanced by the capillary forces, 
giving rise to the following equation 

Y(l/Rl+ 1/R2) = Pgz + P*, (1) 
where y is the surface tension of the interface and R, and R2 are the principle radii 
of curvature. The first of these is associated with the drop curvature when viewed in 
profile (in the ( r ,  2)-plane of figure 1). The second term is curvature in a perpendicular 
plane containing the normal. Curvature can be positive or negative depending on 
which way the profile curves. The usual convention is applied here : radii of curvature 
are assigned positive values when the surface is concave when viewed from the liquid 
and negative otherwise. The relevant expressions for the two curvatures can be 
obtained from differential geometric results whereupon ( 1) becomes 

As already pointed out, previous analyses have used (2) as starting point with p* 
given in terms of the radius of curvature at  the apex. We will not be using this 
equation as it stands but it will nevertheless turn out to be extremely important 
when we seek to rescale variables in different regions. Appealing again to differential 
geometry we can replace (2) with the following system: 

dr dz 
- = COS$, 
ds ds 

- = sin$, 

where $ is the inclination a t  any point ( r ,  z )  and s is the arclength measured from the 
apex. A considerable advantage of the new system is that we no longer have 
problems with infinite slopes (dz/dr in (2)) when the drop profile becomes vertical. 
Rienstra (1990) used (3) to obtain first-order solutions for sessile drops. Arclength 
can be eliminated from (3): this appears desirable but introduces its own 
complications as mentioned in $22. Arclength is eliminated from (3), as in O'Brien & 
van den Brule (1991), yielding the following system : 

yr sin $ 
(4a, b)  - dz - yr cos q5 - dr 

d$ -ysin$+pgrz+p*r' d$- -ysin@+pgrz+p*r' 

This system of ordinary differential equations will be the starting point for our 
analyses. We consider r and z to be functions of the parameter q5, the independent 
variable, which is the angle of inclination. In the pendant problem this allows the 
derivation of an explicit equation for the point of inflexion. The occurrence of a point 
of inflexion means that the inclination $ changes direction there so it is important 
that its location be known explicitly. 

The natural lengthscale existing in the problem is the capillary length given by 
a = (y/pg)i. Equation (4) is non-dimensionalized as follows : 

-- 

X = r / a ;  Y = z / a ;  P = p*/pga, (5 )  

whereupon (4) reduces to 

dx x cos $ dY - X sin $ 
d$ -XY+XP-sin$' @-XY+XP-sin$' 
-- 
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FIGURE 3. The equator of a sessile drop. 

In the course of this paper, it is helpful to remember that X, Y ,  P are the fundamental 
dimensionless variables we choose to work with. This should clarify any confusion 
which arises due to the various scalings which are used in the course of the analysis. 

3. Boundary conditions 
A full solution of (6) requires one boundary condition for each first-order equation 

and a supplementary condition to solve for the unknown constant P. Referring to 
figure 1 we see that our choice of coordinate system fixes two conditions: 

X = O  and Y = O  when # = O .  (7) 

The most obvious other condition would be given in terms of the contact angle at the 
base of the drop where it meets the horizontal substrate. However this is 
unnecessarily complicated : instead we formulate a condition a t  the point of 
maximum bulge of the drop. At this point (see figure 3) we have 

X = R  when #=in, 

where R = L / a  is the dimensionless drop radius at this point, L being the maximum 
radius of the drop in the physical variables. The important point here is that the 
shape of the drop is essentially determined by the values R and a. Once these are 
fixed the universal shape of the drop is determined: the contact angle merely 
determines the point at which the drop meets the substrate. Referring to figure 3 we 
can truncate the theoretical drop shape a t  the point where # = 8. If 8 = in then the 
drop shape is given by that portion of figure 3 which exists above the dotted line. If 
8 < in we truncate somewhere above the dotted line. Even though # in reality never 
becomes equal to in in this case, condition (8) may still be used. 

4. Scaling the equations 
In order to carry out a successful parameter perturbation it is necessary to find the 

correct scalings for the different terms in (6) especially because of the existence of 
nonlinear terms. To this end consideration of (2) will prove extremely helpful. If a 
liquid drop becomes infinitely small, its shape is perfectly spherical and this will be 
the basis of a perturbation solution, the dimensionless radius being the small 
parameter. As this radius becomes very small the two curvature terms in (2) become 
very large and the body force term (pgz) becomes negligible in the limit. The p* must 
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also be of the same order as the curvature terms as these have the same sign and 
cannot balance one another. It is thus also necessary to scale the constant p* (or 
more correctly the dimensionless P). The zero-order problem should thus represent 
a balance between curvature effects and p*. Guided by these qualitative 
considerations we introduce the scalings which yield the correct balance a t  zero 
order. It is obvious that lengths should be scaled with R so we define scaled variables 
x,y,p:  

The final scaled system is thus 

X = R x ;  Y = R y ;  P = p / R .  (9) 

dx x cos q5 dy - x sin qj 
dq5- R2xy +xp - sin qj ’ 

- _ -  
dq5- R2xy+ xp- sin q 5 ’  

with scaled boundary conditions 

x = O  and y = O  when # = O ,  

x =  1 when q5 =in. 

We are assuming that qj has O( 1) behaviour : this turns out to be correct except in the 
neighbourhood of x. We can now define what we mean by a small drop: we require 
that if L is the physical radius then R = L/a  is a small number. Note that for pure 
water a is approximately 2.7 mm so for a water drop of radius 1 mm, R2 is roughly 
0.14. We now seek solutions of (10) in the following form: 

x = x , + R ~ x , + R ~ x ~ ;  y = y0+R2y1+R4y2; p = po+R2pl+R4p2. (13) 

Note that because p is a constant, once it has been established that it is correctly 
scaled, this scaling remains valid everywhere. This is not necessarily the case for 
variables such as x and y whose order of magnitude can change in boundary layers. 

5. Zero-order solutions 
Substituting the series (13) into (lo), we obtain to lowest order : 

xopoxh-x~sinqj = xocosq5, xopOy;,-yhsinq5 = xosinq5, (14a, b )  

where differentiation with respect to qj is denoted by a prime. Applying the relevant 
boundary conditions : 

xo=O;  yo=O when # = O ,  (15) 

x o =  1 when # = i n ,  (16) 

we obtain the following solutions : 

xo =sin$, yo = 1-cosq5, pa = 2. (17 a+) 

As expected the zero-order solution gives a circular profile, describing a spherical 
drop. 

6. First-order solutions 
At this order we obtain 

xo yo xi+xopl xk + x l p o x ~  +xop, xi -xi sin qj = x1 cos q5, 

xo Yo Y;+xo Pl Yh + X l  Po Y;, +xo Po y; - Yi sin qj = 51 sin 4. 
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Applying the following boundary conditions : 

z,=O; y l = O  when q5=0, ( 1 9 4  

x1 = 0 when q5 = ix, 

x1 = gcos2q5tan&5, 
we obtain the solutions: 

y1 = gcosq5-gcos2q5+~ln(cos&5), 

p ,  = -5. 
Solutions to second order are to be found in O'Brien & van den Brule (1991). 

7. Solutions near 9 = x 
A cursory glance a t  (20) indicates a singularity in the solutions at q5 = x where both 

x1 and y1 blow up. This is of course physically unacceptable. The indications are that 
our scalings are incorrect near Q = R and it is found that a boundary layer occurs in 
this region and a stretched inner independent variable is necessary. The outer 
solutions, when 9 is not near x, are then given by (17), (20). In addition the scale of 
the dependent variables x and y also changes in the boundary layer. Inspection 
indicates the following rescaled variables 6, 5, p ,  @ to replace (9) : 

X = R't;; Y = 2R+R35; P = p / R ;  Q = x-R@. (21) 

In fact only p is unchanged here. Strictly speaking we should more generally scale 
Y = odl+R35 but it is simpler to anticipate a = 2 from physical considerations since 
at lowest order the drop is spherical, so near q5 = R ,  Y = 2R + o(R). In addition we will 
only work to leading order so we will not attach suffixes: t; and 5 are taken to be 
lowest order rather than writing 6, and 5,. Extension to higher orders is 
straightforward but tedious. With these scalings, which indicate that the boundary 
layer is O(R) in q5, (6a) now yields the following lowest-order boundary-layer 
equations for t; and 5:  

pEf'-@f' = E ,  
- 2Ig + @q = t;@, (22b) 

where the primes denote differentiation with respect to @. Bearing in mind that p 
cannot change order and is given to lowest order by (17 c) we have p = 2 in (22). This 
can now be integrated, yielding 

@ = <-C/t; or E = (@2 +~c)$I, (23a) 

5 = -a@(@' + 4C)f + C In [@ + (G2 + 4C)i] -a@2 + N ,  (23b) 

where C and N are arbitrary integration constants to be obtained from matching with 
the outer solution. The positive root of (23a) is the relevant one. As solutions for the 
case when q5 > x have no physical relevance to the problem of a drop resting on a 
plane horizontal surface (they actually represent a curling up of the drop profile on 
itself) we neglect them from now on. We note however that the situation with Q > x 
can occur, for example, in the case of a drop on top of a suitably shaped rod as 
discussed by Padday (1971). To describe this profile, one must continue the solution 
for q5 2 x and it should be borne in mind that (23) is only valid very close to q5 = x. 
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To continue the solution for 0(1) changes in q5 i t  is necessary to rescale all variables 
once more in an analogous manner to that later adopted for the neck region of the 
pendant drop (3 15). 

8. Matching inner and outer solutions 
To find the integration constants of (23) we match the outer solution obtained 

from (17a) and (20a) with inner solution (23a). We assume the existence of an 
intermediate overlap variable 8 such that 

9 = n-dq(R); @ = (n-$)/R = Oq(R)/R; O(1) % q(R) 9 R. (24) 

The outer solution, in fundamental dimensionless form (5 ) ,  expanded for small q 
yields 

while the inner solution gives 

to  the same order, provided R % q 2 ,  which defines the overlap region. The solutions 
match identically to  O(R), justifying our O(R) scaling of Y while matching to next 
order yields 

c = 2. 

Proceeding with the Y matching using the same intermediate variable 8, the outer 
solution obtained from (17b)  and (20b) yields 

ROq + 2R3/38q (25) 

R8q + CR3/8q (26) 

(27 1 3 

R( 2 - $02q2) + F( - 2 + p2q2) + S3[ ln  (07) - In 21, (28) 

2R-~82q2-~.@3C+CR31n (2Oq/R) +NR3. (29) 

while the inner solution (236) gives 

At this point we run into a well-known phenomenon which often occurs in singular 
perturbation problems. (See for example Lagerstrom & Casten 1972.) As they stand 
(28) and (29) cannot be matched owing to  the presence of R3 In R terms in (29). Our 
analysis indicates that switchback terms are needed, i.e. that the scaling of 6 was not 
correct and there are some terms of between O(R)  and O(R3) which have been 
omitted. Formally we can remedy this by inserting an extra term c,, R3 In R into the 
expansion for Y .  On substituting this into (23b) we find that 6, = D,,, an arbitrary 
constant, so we are free to add an extra term DSwR3lnR onto (29). I n  this way D,, 
can be chosen so as to annihilate the R31n (R) terms and the matching can be 
successfully carried out. It yields the following results : 

N=$(-21n2--);  D sw = 2  3, (30) 

(31) K,,,,, = 2R + D,, R3 In R3 + R3[( @), 

where g(@) is given by (23b) and x,,,,, is in fundamental dimensionless form ( 5 ) .  

9. Comparison with previous results 
Tables 1 and 2 compare the results of the present paper with the previous results 

of Chesters (1977) and the numerical results of Hartland & Hartley (1976) which may 
be taken to be exact. Table 1 includes solutions to  second order which can be seen 
to compare favourably with the numerical solutions. Also included are the first-order 
results for comparison with Chesters’. Table 2 contains only first-order results. The 
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Cheaters 
Present (B) 

Present (ca) 
Hartland 

Chesters 
Present ( E )  

Present (e2) 
Hartland 

5, Y e  

(R = 0.00998) 
(p = -0.Oool) 

0.999983 0.999 960 
0.999 993 0.999960 
0.999 983 0.999960 
0.999 983 0.999 960 

(B = -0.03162) 
(R = 0.17689) 

0.994 730 0.987 423 
0.994815 0.987 622 
0.994815 0.987 734 
0.994815 0.987 730 

5.2 Y C  

(R = 0.009983) 

0.998333 0.996023 
0.998342 0.996 043 
0.998 342 0.996 054 
0.998 342 0.996 054 

(/? = -0.01) 

(p  = -0.1) 
(R = 0.3112) 

0.983 333 0.960228 
0.984 151 0.962 127 
0.984 151 0.963 193 
0.984 151 0.963 129 

TABLE 1. Comparison of sessile drop solutions of present paper with previous perturbation solution 
of Cheaters and numerical solutions of Hartland & Hartley at g5 = in, when the drop is vertical. (? 
is Cheaters’ shape factor. The variables of the present paper are obtained by multiplying by (-8)s. 

5 Y 
(p = -0.Oool) 
(R = 0.00998) 

5 Y 
(/? = -0.01) 
(R = 0.099983) 

Chestem 8.16497 x 1.99957 8.16497 x 1.972 01 
Present 8.16468 x 1.99957 8.13791 x 1.972 139 
Hartland 8.164 15 x 1.999 57 8.08481 x 1.972 39 

(p = -0.031 62) (p = -0.1) 
(R = 0.17689) (R = 0.3112) 

Chesters 0.145 196 1.923 62 0.258 199 1.79686 
Present 0.143687 8 1.924 71 1 0.250079 1.805 42 
Hartland 0.140 846 1.926 56 0.236010 1.817 42 

TABLE 2. Comparison of boundary-layer sessile drop solutions to first order with previous 
perturbation solution of Cheaters and numerical solutions of Hartland & Hartley at  4 = x, when 
the drop becomes horizontal. 

solutions in the present paper are seen to be better in all cases. Nevertheless the 
solutions of Chesters stand up quite well given the ad hoc nature of his perturbation 
procedure. We note that p i s  the shape factor of Chesters. In  order to obtain the small 
parameter R = L / a  of the present paper, we use the relationship R = X,,,( -p$ 
where X,,, is obtained from the numerical (exact) results. Thus in table 1 the x- 
solutions are irrelevant and it is the y-solutions that should be examined. We also 
note that the x, y of tables 1 and 2 are given in terms of Chesters’ variables for 
simplicity of comparison. To obtain the non-dimensional variables of (5 )  all values in 
tables 1 and 2 must be multiplied by (-p);. 

By making use of the boundary-layer solutions we can explicitly write down the 
values of X and Y at the base of the drop where q5 = 7c. From (23a)  and (23b) ,  setting 
@ = 0 we obtain the following results: 

X = ($R2; Y = 2R+93(-1-1n6)+p31nR. (32)  

The first of these corresponds to Chesters’ (56) while the second corrects his (57). Of 
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course his lengthscale is the radius of curvature at the top of the drop, but 
nevertheless we might expect the two results to be asymptotically equivalent in the 
limit. Comparison with numerical solution verifies that the present results are an 
improvement. 

10. Composite solutions 
It is, as usual, possible to derive an expression for a solution uniformly valid for 

0 < q5 < n:, i.e. both inside and outside the boundary layer. Working to O(R3), the 
common part of X given in terms of the outer variable q5 is 

(33) 

and a composite solution is obtained by adding the outer and inner solutions (17a), 
(20a) and (23a) written in terms of the fundamental dimensionless variable X of (5) 
and subtracting (33). As (20a) has a singularity when q5 = n: which is obliterated by 
a similar singularity in (33)’ it may be desirable to write (20a) in a Taylor series near 
q5 = n: to avoid numerical difficulties by explicitly removing the singular terms. 

x,, = ~ ( x  - $1 + m3/[3(n - q5)i 

Similarly the common part of Y to O(R3) is given by 

yCp = 2R -l&(n - q5)2 -$R3 + s3 In (x - q5) -2313 In 2. (34) 

A composite solution is given in terms of the fundamental variable Y using (17b),  
(20b) and (31). The inner and outer solutions are summed and the common part (34) 
is subtracted. Similar to the X case, numerical problems may be avoided by use of 
Taylor series near q5 = n. 

Part 2. Pendant drops 
11. Problem formulation 

There are many similarities between the sessile and pendant drop problems which 
can be exploited. One basic difference is illustrated by figure 2 where a different 
choice of coordinate system illustrates that gravity forces act, in effect, in the 
opposite direction to the sessile case. The basic equation is still (l), but in this 
instance the sign of the pgz-term changes. Carrying this sign change through the 
previous analysis, we obtain the following modified form of (6) in terms of the 
dimensionless variables (5 )  : 

d x  x cos q5 dY X sin q5 
d# - -XY+XP-sin$’ (35% b )  _-  -- 

dq5 - -XY+XP-ssin$‘ 

The boundary conditions (7)  and (8) remain identical. 

12. Solution strategy 
Before proceeding any further with the solutions, it is helpful to consider an overall 

strategy as suggested by the physics of the problem. An examination of figure 2 
indicates that the bottom part of the drop will again resemble a circle as in the sessile 
case. We can expect the higher-order corrections to tend to elongate the drop rather 
than flattening it as in the sessile case. It is thus physically reasonable, and analysis 
verifies this, to expect no more than changes in sign in the lower solution, henceforth 
referred to as the outer solution, when compared to the equivalent part of the sessile 
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--I  Neck 

Outer region 

FIQURE 4. Schematic drawing of drop neck. 

drop. However, as the inclination passes monotonically from 0 through #a and again 
approaches x ,  a qualitative change occurs in the drop shape which has no analogue 
in the sessile case. A point of inflexion occurs and the inclination q5 changes direction, 
attaining some maximum value q5i and then decreasing monotonically towards a 
minimum q5m at the extreme top of the drop. If the contact angle is not equal to this 
minimum, the drop shape can be truncated at  the point where the inclination does 
equal the contact angle. 

If we momentarily ignore the behaviour of the solutions near the inflexion point, 
we may enquire what happens in the neck region. Hereafter we will refer to solutions 
in this region as the neck solutions. It is clear that the drop shape in the neck does 
not even vaguely resemble a sphere: this indicates that our problem will need 
rescaling in this region. The key to the neck region is illustrated in figure 4. This 
illustrates that the drop shape in the neck region is in fact of the same form as the 
meniscus near a small cylinder with contact angle equal to #a. In this region, if 6 is 
a scale for the cylinder radius, then S + R and scaling x and y with S as in James 
(1974) yields a lowest-order balance between the curvature terms of (2) or (3). The 
precise size of 6 is initially unknown but can be derived from matching with the 
interior-layer solution. 

This leads naturally to the problem of the matching. The neck solution would 
appear to be valid from the point of inflexion to the uppermost point of the drop, 
thus as q5 decreases from di to its minimum value. The outer solution should be valid 
from the bottom of the drop to near the point of inflexion, thus as q5 increases from 
zero to q5j. In addition, the outer solution (like the sessile drop case) displays a 
singularity at q5 = a and it is not immediately obvious if the solutions at the point 
of inflexion (which is asymptotically near q5 = a) are valid. Not too surprisingly, it  
turns out that the outer and neck solutions cannot be matched. Completely 
analogous to the sessile case, there exists a transition or interior boundary layer in 
q5 of O(R) but in this instance it is centred about the point of inflexion rather than 
q5 = a. The outer solution can be matched to this on one side and the neck solution 
on the other side. 

A final complication arises at  the top of the neck region. As q5 tends to its 
minimum, the neck solution becomes singular and it is necessary to insert another 
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boundary layer near q5 = 0. Mathematically, this region is very similar to the 
interior-layer region about the point of inflexion, the analysis being virtually 
identical. Analogous to the point of inflexion, there exists a value of q5 below which 
no solutions exist. This limiting value can be interpreted as a second point of 
inflexion. 

In summary the solution consists of four regions : an outer nearly circular region, 
an inner interior-layer region near q5 = IT, a neck region resembling the meniscus near 
a small cylinder, and another boundary layer region at  the uppermost extremity of 
the drop. 

13. Outer solution 
In this region, the scalings (9) are relevant and the scaled system is 

x sin q5 
(36% b) - dY - dx x cos q5 _ -  

dq5- -R2xy + xp - sin q5 '  dq5- -R2xy + xp - sin q5* 

The boundary conditions (11) and (12) are still valid and we again seek solutions of 
the form (13). The zero-order equations and solutions turn out to be identical as 
given in 55. Equations (17) are thus valid. 

The first-order solutions are equivalent except for a change in sign. The equations 
are : 

-xo yo xh + xop, xh + xIpo  xh + xopo x; -xi sin qi = x, cos 9, (37a) 

-xo Yo Y; +xo Pl Y; +XI Po Y; +xo Po Y; -Y; sin4 = x1 sin 6 (37 6) 

with solutions x, =-+cos2q5tan(s), (38a) 

y, = -gcos q5 +fcos2 q5 -$ln [cos (#)I, 
p, = f. 

Similarly the second-order solutions are given by 

-x2 sin q5 = &COB q5 +& cos 34 -&sin4 q5 +A cos4 q5 

- (Q+&ln 2) cos 2q5 -b2 sin2 q5 
+ S l n  (2 cos2 [iq5]) [cos 2q5 - 11 + 2 cos q5 - cos2 q5} 

- %sin2 [44] sin q5 cos2 q5 tan [#] + c0s3 q5 - Q C O S ~  q5} 

-$po xi -p, xo x1 -A+& In 2, (39a) 
- y2 = -gin 2 + cos q5(iln 2 +%) -gcos2 q5 +$cos3 q5 

- 3 cos #/sin2 q5{ -& cos4 q5 +; cos3 q5 -6 cos2 q5 -$ cos q5 +i) 
+In {cos [iq51) ( -5 COB q5 -9, -Yo y1 +b1, (396) 

-p2 = gln2-8. (394 

14. Interior-layer solution 
As in the sessile drop case we again stretch the independent variable q5 using the 

scalings (21). The lowest-order boundary-layer equation for E is again (22a) yielding 
a solution similar to (23a) but with a different integration constant : 

CD = E - D / E  or 6 = ~ [ c D ~ - ( c D ~ + + ) ~ ] .  ( 4 0 ~ ~  b )  
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The constant D is found by matching with the outer solution. The analysis of the 
matching is similar to the sessile case and yields 

(41) 

This is reminiscent of (27) but in fact the negative sign is extremely significant. 
Equation (40) has no solutions for @ = 0 (4 = n), which we might have expected as 
the drop never becomes horizontal again. In fact (40) has no solutions for @ < ($ and 
in fact this defines our inflexion point to O(R), which occurs when d@P/dS = 0 and is 
explicitly given by 

This relationship can be easily verified by a consideration of the numerical solutions 
of Hartland & Hartley. Furthermore both branches of (40) are relevant : the positive 
root is valid before the point of inflexion is reached and 4 is still increasing, after 
which the solution switches to the negative root and 4 decreases towards zero. 

The boundary-layer equation for c turns out to be identical to (22 b) yielding the 
following lower interior-layer solution before the point of inflexion : 

D=-Z 
3' 

@ = ($ or 4 = n-R($. (42 1 

5 = - ~ o ( w + ~ D ) ~ + D I ~  [ @ + ( w + ~ D ) ~ I - ; @ ~ + M ,  (43a) 

where we have also used the positive root of (40). The constant M will be obtained 
from the matching while D is given by (41). 

Beyond the point of inflexion, the negative root of (40) is valid. Substituting this 
into the boundary-layer equation (22 b) we obtain the following upper interior-layer 
expression for [ beyond the point of inflexion: 

6 = a@(@ + a ) ; - D  In [@ + (QZ +a)+] -a@)" + Q ,  (43b) 

in which Q has yet to be determined. In addition we will demand that (43a) and 
(43b) are continuous across the point of inflexion as an extra condition. For this 
reason it is convenient to rewrite (43 b) as follows : 

c = ~ @ ( c P + ~ D ) ~ + D I ~  [ @ + ( @ z + ~ ) ~ ~ - ~ @ 2 + & ,  (43 4 
as continuity of (43a) and (43c) merely requires that M = &. Before proceeding with 
the matching, we consider the neck region. 

15. The neck solutions 
As already elucidated, the scaling for the neck region requires a dominant balance 

between the curvature terms of (2). We introduce the following new scalings obtained 
by inspection : 

X=6(R)u ;  Y=rn+&(R)v,  (44) 

where 6(R) is an unknown function. We do know that 6(R) < R as otherwise (35) will 
not yield the correct balance. The easiest way to see this is by a consideration of the 
dimensionless form of (2). We expect that 4 is 0(1) and leave it unscaled. We will 
again only work to lowest order and will not use suffices on the u and v to 
demonstrate the order. The lowest-order equations are : 



532 S.  B.  G. O'Brien 

with the solutions 

These are in fact the parametric equations of the meniscus near a small cylinder. The 
constants A and R, and the gauge function S(R) will be found during the matching 
with the upper interior-layer solution. 

u = A cosec 4, v = - A  In [tan ( ~ ) ]  +B.  (46a, b) 

16. The top boundary layer 
As the inclination 4 approaches $m near the top of the neck region (46) indicates 

that the solutions may become singular. This again indicates the occurrence of a 
boundary layer, which again turns out to be O(R) in 4. The analysis is similar to that 
at the bottom of the neck region ; we refer to this new boundary layer as the top layer. 
The scalings (21) are valid again except that  $ is approaching 0 in this case so the 
stretched inner variable is defined by 

$ = R@. (47 ) 

The boundary-layer equation for 6 is now 

25E' - @C = 5, 
with solution : @ = E-E/[  or 6 = $[@-(@z++)i], 

(48) 

(49) 

where E will be determined by matching with the neck solution. The negative root 
is used in (49) because i t  turns out to  be the one which matches with the neck region. 

Similarly the boundary-layer equation for 6 is 

25c-@g = E@, (50) 

(51) with solution 6 = -f@(@ + 4E)i+E In [@ + (az +a)$] +a@ +S, 

where the integration constants will be determined in the matching. 

17. Matching of outer solution and lower interior-layer solution 
The X matching has already been completed. The Y (or 6) matching involves (43a) 

and the outer solution obtained from (17 b) and (38b). The matching is similar to the 
case of the sessile drop with the occurrence of R3 In R terms necessitating the need to 
again include switchback terms as in the sessile case. Without repeating the details, 
we obtain the following for the lower solution: 

5 = - l @ ( @ z  4 - !):- In [@ + ( ~ 2  -!$I - a ~ z  + 1 3 3  + 4 In 2 - lnR, (52) 

so in (43a) M = :+$1n 2-%lnR, the latter term being a switchback. At this point 
the solution is fully determined up to the point of inflexion. 

18. Matching of upper interior-layer solution and neck solution 
Beginning with the X (or 6,  u)  matching, the solutions to  be matched are (40b) and 

(46a). We again introduce an intermediate variable 6 and a gauge function 7(R) such 
that 1 $- 7 $- R. Working in terms of the fundamental variable X, and setting 
@ = ev/R (40 b) yields the following leading-order expansion as 7 + 0:  

2~31387 
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while (46a) with 4 = z-07 yields 

and matching yields both the constant A and the gauge function 6: 

A&/@ 

A = g; 6(r)  = R3. 
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This indicates that the radius of the imaginary cylinder of figure 4, i.e. the minimum 
width of the neck is 2g3. 

Continuing with the Y matching, the relevant equations are (43c) and (46b). 
Introducing the intermediate variable 0 again and setting 4 = x-87,  (46b) gives the 
following limiting expansion in terms of the fundamental variable Y: 

2R - 2g3 In 2 +Zp3 In (67) +BR3, 

2R -193 + 2 p 3  In (87) + s3 In $ - 2 s 3  1nR + QR3. 

(53) 

(54) 

while (43c), with @ = 87/R yields 

Equations (53) and (54) show two apparent sources of difficulty. In  the first place 
they both contain unknown constants B and Q and secondly we note again the 
occurrence of R3 In R-terms in (54) which do not correspond to any term in (53). The 
first of these difficulties is resolved by the fact that the lower and upper solutions 
(43a) and (43c) should be continuous at  the point of inflexion so we have 

Q=M=;+$ln2-:InR (55) 

adding switchbacks as required. In this way (43b), the upper interior-layer solution 
becomes 

6 = t @ ( ~  + 4 ~ ) f  + D  In - ( ~ 2  + 40)9 - ;@2 + 1 3 3  + 4 ln 2 - g In R. (56) 

The constant B can now be determined from the matching of (53) and the modified 
form of (54) which is 

2R -1p3 + 2p3  In (07) -2p3 In f-2p3 In R + QR3, 

Q being given by (55). Clearly switchback terms -41nR are also needed in (53), 
whereupon matching gives the relationship 

B = i ln6.  (57) 

(58) 

The solution for the neck region in terms of the fundamental variable Y now reads 

T = 2R -s3 In [tan (@)I +BR3 -$3 lnR, 

where B is given in (57). 

19. Matching of neck and top boundary layer 
Without repeating the details, matching (46a) and (49) using an intermediate 

variable 8y(R) gives the result : E = -$. Similarly the expression for 6 in (51) becomes 

6 = 4 -$-; In [@ + (G2 -39 +$D2 +:In 24 -5- 2 In R, (59) 

where switchback terms have been added as required. Equation (49) now shows @ to 
have a minimum value of (t);, i.e. & = ($R. At this point d@/dt is again zero, 
another inflexion point occurs and so 4 again changes direction and begins to increase 
once more. The shape of the top boundary layer is a mirror image of the interior layer 
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and it is possible to continue the solution upwards to obtain a sequence of drops, each 
one connected by a neck to the preceding one. The analysis in this case proceeds 
much as before. 

20. Composite solutions for the pendant drop 
In this instance it is not possible to derive one composite solution for the whole 

problem. Two are required : one of these is valid below the point of inflexion and the 
other above it. In the matching of the outer solution and the lower interior-layer 
solution we obtain the following common part for X :  

(60) X l c p  = R(n -$) -2R3/[3(n -$)I, 
so to O(R3) the lower composite X-solution is given by summing the outer solution 
(17a), (38a) and the lower interior-layer solution (40a) and subtracting (60). 
Similarly the common part of Y in the lower region is 

qCp = 2R-~(n-$)2+@3-~31n(7c-$)+2jB31n2 (61) 
and the relevant solutions are (17b), (38a) and (43a). 

In the upper region the common part of X is 

xucp = 2 ~ ~ / [ 3 ( 7 ~  - $)I, 
the relevant constituent solutions being the upper interior-layer solution (40b) and 
the neck solution (46a). The common part of Y in this region is 

(63) 

For the neck and top-layer solutions we obtain the following common parts in 

Y UCP = -g3 In 2 + $R3 In {n - q5}  +R3($ In 6 -d In R) + 222, 

the constituent solutions being (56) and (58). 

terms of the fundamental variables : 

A complete composite solution for the portion of the drop extending from the point 
of inflexion to the top is obtained by adding the upper interior-layer, neck and top 
boundary-layer solutions and subtracting the common parts (64) and (65). 

21. Comparison with previous results 
Tables 3 and 4 compare the results of the analysis of this paper with previous 

results of Chesters (1977) and the ‘exact ’ numerical results of Hartland & Hartley 
(1976). The higher-order solutions for the outer problem are included. The results of 
the present paper are seen to be better in all cases when compared to Chesters’ 
solutions. The area where the solutions are worst is the neck, in particular the X -  
values - although this could partly be expected as X is O(R2) in this region while Y 
is O(R3). Extension to higher order seems possible though tedious but it is unclear 
how to obtain better estimates of the point of inflexion though the arclength 
formulation (3) may be suitable as discussed in $22. It is interesting to include some 
other asymptotic results. At the point of inflexion we have the following expressions : 

x = ($)iR2, 

Y = 2R+R3(-f-$lnR++1n6). 



The s h p e  of small sessile and pendant drops 535 

Chesters 
Present (e)  
Present ( e2) 
Hartland 

Chesters 
Present (6)  

Present (e2) 
Hartland 

x c  Y C  

(R = 0.00998) 
(j3 = -0.0001) 

1.00002 1.00004 
1.00002 1.00004 
1.00002 1.00004 
1.00002 1.OOOO4 

(B = -0.031 62) 
(R = 0.17689) 

1.005 27 1.01258 
1.005 36 1.01278 
1.005 36 1.012 98 
1.005 36 1.012 91 

2, Y c  

(R = 0.099983) 

1.001 67 1.003 98 
1.001 68 1.00400 
1.001 68 1.00401 
1.001 68 1.00401 

(p = -0.01) 

(B = -0.1) 
(R = 0.31 12) 

1.01592 1.037 98 
1.01668 1.039 86 
1.01668 1.041 77 
1.016 68 1.04 1 20 

TABLE 3. Comparison of ‘outer solutions’ for pendant drop with previous perturbation solution of 
Chesters and numerical solutions of Hartland & Hartley, at  q5 = in, when the drop is vertical. B is 
Chesters’ shapelfactor. To convert to the variables of the current paper all values should be 
multiplied by p. 

X C  Y C  
(a )  4 = qi, 

( p  = 10-4) 

Chesters 8.16497 x lo-’ 2.000 37 
Present 8.16530 x lo-’ 2.00037 
Hartland 8.16578 x lo-’ 2.000 37 

(j3 = 0.031 62) 

Chesters 0.145 196 2.055 2 
Present 0.146 80 2.05607 
Hartland 0.15000 2.057 32 

X C  Y e  

(p = 10-2) 

8.16497 x 2.021 32 
8.19242 x 2.021 42 
8.247 89 x 2.021 60 

(B = 0.09550) 

0.252 322 2.13180 
0.26081 2.13731 
0.28000 2.143 85 

X C  Y c  5, Y c  
( b )  $ = i n  

(j3 = 10-4) (p  = 10-3) 

Chesters 6.66667 x 2.000777 6.66667 x 2.04598 
Present 6.667 1 x lo-’ 2.000 77 6.7003 x 10-3 2.0462 
Hartland 6.667 78 x 2.00077 6.7796 x 2.0466 

(j3 = 0.031 62) (/3 = 0.09550) 
Chesters 2.108 19 x 2.121 13 6.3666 x 2.29544 
Present 2.142 07 x 10-2 2.1 22 86 6.6905 x 2.308 16 
Hartland 2.22551 x 2.12691 7.5705 x 2.33781 

TABLE 4. Comparison of pendant drop results (a) at the point of inflexion, $ = qi,, and (b) in the 
neck region where the drop beFomes vertical, qi = in. To obtain the variables of the present paper 
all values are multiplied by p. 

The first of these compares with Chesters’ equation (34) while the second corrects his 
equation (47). In  the neck region where the drop becomes vertical, we have 

x = B g p ,  (68) 
Y = 2R+R3($1n6-ilnR). (69) 
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Present Hartland & Hartley 

4 X Y X Y 

10 1.736539 x lo-' 1.520084 x 1.73655 x 1.51931 x 
30 5.001643 x 1.340531 x 5.001 64 x 1.34042 x 
50 7.666821 x 3.577 155 x 7.66680 x 3.57700 x 
70 9.409905 x lo-' 6.596862 x lo-' 9.40991 x lo-' 6.59655 x 
90 1.001 668 x 10-1 1.004030 x 10-1 1.001 68 x lo-' 1.00401 x lo-' 

110 9.406868 x 1.349582 x lo-' 9.407 00 x 1.34598 x lo-' 
130 7.642943 x 1.654946 x lo-' 7.64298 x 1.65499 x lo-' 
150 4.911 343 x 1.883886 x 10-1 4.91083 x 1.88400 x lo-' 
170 1.182661 x 2.015297 x lo-' 1.17548 x 2.01566 x lo-' 
170.602 (numerical) 
170.627 8.210917 x 2.021452 x 10-1 8.247 89 x 2.02160 x 10-1 
170 5.712326 x 2.025626 x lo-' 5.787 18 x 2.02575 x lo-' 
150 1.373 161 x 2.037 129 x lo-' 1.38480 x 2.03749 x lo-' 
130 8.819 150 x 2.041 01 1 x 10-1 8.89304 x 2.041 43 x lo-' 
110 7.j.61 A92 x 2.043784 x lo-' 7.221 29 x 2.04424 x lo-' 
90 6.723577 x 2.046 199 x lo-' 6.77968 x 2.04669 x lo-' 
70 7.161 492 x 2.048614 x lo-' 7.221 29 x 2.049 15 x lo-' 
50 8.819 150 x 2.051 387 x lo-' 8.89303 x 2.051 96 x lo-' 
30 1.373 161 x 2.055269 x 10-l 1.38480 x 2.05590 x lo-' 
10 5.712326 x lo-' 2.066772 x lo-' 5.78624 x 2.067 64 x 10-l 
9.39698 (numerical) 
9.372 8.21091 x 2.07095 x lo-' 8.249 15 x 2.071 79 x 10-l 

TABLE 5. Comparison of pendant drop numerical results of Hartland & Hartley with composite 
solutions of present paper. R = 0.100168, Hartland's shape factor B = lo-'. X and Y are the 
dimensionless fundamental variables of this paper. 

Again the second of these corrects Chesters' result. At the topmost extremity of the 
drop X is again given by (66) while Y is given by 

Y = 2R+R3(ln6+$-21nR). (70) 
The value of 9 a t  this point is given by 4 = 4m = (2);R. 

Finally table 5 compares a full set of solutions, this time in terms of the variables 
(5 ) ,  with numerical solutions of Hartland & Hartley. The composite solutions of this 
paper are used, which are slightly less accurate than the relevant constituent 
solutions. Also included are a comparison of the numerical and asymptotic 
expressions for q5i and #,,,. 

22. A comment on the point of inflexion 
The alternative formulations of the problem, (2) and (3), may be better frameworks 

for describing solutions near the point of inflexion in that it is no longer necessary to 
determine this point explicitly. For example, if we non-dimensionalize (3) using (5) 
supplemented by a dimensionless arclength s = t / a  and then scale using (21) 
supplemented by t = 2RR + R27, 7 being scaled arclength, we obtain the following 
expression for Y as a function of 5 valid through the inflexion point : 

Y = 2R+R3(-~(2-~ ln(+$ln2-$ lnR) .  

This result can also be obtained by eliminating 0 from the interior-layer 
equations. 
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23. Conclusions 
We have revisited the problem of obtaining closed-form solutions for small sessile 

and pendant drops. Both problems showed singular or non-uniform behaviour, the 
method of matched asymptotic expansions being used in the course of the analysis. 
The sessile solutions are completely satisfactory when compared to numerical results, 
extension to higher-order approximations being straightforward. The pendant drop 
solutions are rather more complicated and interesting, a number of different scalings 
and boundary layers being required for an understanding of the solutions. This paper 
is not an exhaustive examination of the two problems, but it does explain the 
mathematical structure of the solutions. These might be extended to higher orders 
though the algebra quickly becomes extremely tedious. 

The author would like to thank Dr A. B. Tayler and Dr A. C. Fowler for advice 
and suggestions during the preparation of this paper. I would further like to thank 
Professor D. H. Peregrine for his careful reading of the manuscript and several 
suggestions for improving it. 
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